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Abstract
The recursion method of Haydock, Heine and Kelly is a powerful tool for calculating diagonal
matrix elements of the resolvent of quantum-mechanical Hamiltonian operators by elegantly
expressing them in terms of continued fractions. In this paper we extend the recursion method
to off-diagonal matrix elements of general (possibly non-Hermitian) operators and apply it to
the simulation of molecular optical absorption and photoemission spectra within
time-dependent density-functional and many-body perturbation theories, respectively. This
method is demonstrated with a couple of applications to the optical absorption and
photoemission spectra of the caffeine molecule.

(Some figures in this article are in colour only in the electronic version)

Density-functional theory (DFT) [1, 2] is currently considered
the state of the art in the simulation of materials at
the atomic (nano-) scale [3], based on electronic-structure
theory [4]. Although the scope of DFT is limited by
construction to the electronic ground state, many material
properties can be accurately and—with the aid of the powerful
algorithms and computers presently available—inexpensively
calculated through it. The establishment of density-functional
perturbation theory (DFPT) [5] has considerably widened the
scope of DFT, by allowing for the calculation of properties
that can be expressed in terms of static response functions,
as well as of vibrational excitations in the harmonic Born–
Oppenheimer approximation [6]. Thanks to these advances,
it is now possible to predict the infrared, Raman and inelastic
neutron- or x-ray-diffraction spectra of materials with an
accuracy that may be comparable with that achieved in the
laboratory. Such an accuracy and flexibility open the way to
the systematic use of computational spectroscopy as a powerful
tool for characterization: by comparing the dependence of the
spectral features of a system on its atomic structure—which
is readily simulated on a computer—with the spectra obtained
in the laboratory, it is often possible to gain detailed structural
and functional information at the nanoscale, which would not
be accessible by experimental means alone.

The situation is not as favorable for those spectroscopies
such as absorption in the visible and UV regions, or
photoemission spectroscopy, for which the excitation of
electrons across the optical gap plays an essential role.
Extending the scope of DFT to dynamical processes [7], so
as to encompass electronic excitations is a very active field of
research [8]. The resulting time-dependent density-functional
theory (TDDFT) holds the promise to become an accurate
and relatively inexpensive path to the simulation of optical
spectra in molecular and nanostructured systems, but several
practical and conceptual difficulties still hinder its deployment
as a routine simulation tool. Many-body perturbation theory
(MBPT) [9], on the other hand, provides a systematic approach
to electronic excited states, but the numerical complexity of
even the most basic of its approximations, such as the GW
one [9–12], is such as to restrict its applicability to models of a
few handfuls of inequivalent atoms, at most, these days.

The main numerical bottleneck that plagues numerical
simulations within both TDDFT and, even more severely,
MBPT is the occurrence of extensive sums over virtual
(i.e. unoccupied) one-electron states in different crucial steps
of both methods. It turns out that such sums can be formally
expressed as matrix elements of one-electron Green’s functions
(in MBPT) or of the resolvent of the quantum Liouvillian

0953-8984/10/074204+08$30.00 © 2010 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/22/7/074204
http://stacks.iop.org/JPhysCM/22/074204


J. Phys.: Condens. Matter 22 (2010) 074204 S Baroni et al

operator (in TDDFT). The recursion method of Haydock,
Heine and Kelly [13–16] provides an elegant and extremely
effective way of calculating such matrix elements, when they
are diagonal and referring to Hermitian operators (such as
quantum-mechanical Hamiltonians). Building on our recent
work on TDDFT [17, 18] and on MBPT [19, 20], in this
paper we extend this method to the case of general off-
diagonal elements of the resolvent of general non-Hermitian
operators, such as those occurring in TDDFT and MBPT,
and demonstrate the resulting algorithm with a couple of
paradigmatic test cases on the caffeine molecule.

1. The recursion method of Haydock, Heine and
Kelly

Suppose one is interested in the calculation of some diagonal
matrix element of the resolvent of a linear, Hermitian, operator
H :

gv(ω) = (v, (ω − H )−1v), (1)

where v is an arbitrary normalized vector. Following
Lanczos [21], we define a chain of vectors from the three-term
recursion:

β0q0 = 0

q1 = v

αn = (qn, H qn)

βn+1qn+1 = (H − αn)qn − βnqn−1,

(2)

where βn+1 is determined by imposing the normalization
of qn+1. The vectors generated by the recursion of
equations (2) have two fundamental properties that lie at the
basis of the power of Lanczos-related methods: (i) they are
orthogonal (when generated in exact arithmetics) and (ii) the
representation of the operator H in the basis generated by them
is tridiagonal.

Let us define

QM = [q1, q2, . . . qM ] (3)

as the N × M matrix whose columns are the first M Lanczos
vectors generated by the recursion of equations (2) (N is the
dimension of the Hilbert space on which H is defined):

SM =

⎛
⎜⎜⎜⎜⎜⎜⎝

α1 β2 0 · · · 0

β2 α2 β3
. . .

...

0 β2
. . .

. . . 0
...

. . .
. . . αM−1 βM

0 · · · 0 βM αM

⎞
⎟⎟⎟⎟⎟⎟⎠

(4)

as the M × M symmetric tridiagonal matrix built with the α
and β coefficients generated by the Lanczos recursion and IM

as the M × M identity matrix. The following relations hold:

Q�
M QM = IM , (5)

H QM = QM SM + βM+1qM+1e�
M , (6)

where e�
M = [0, · · · 1] is a 1 × M unit array. Here and

in the following we indicate matrix transposition with the
‘�’ symbol, and vectors of the Lanczos chain are treated as
N × 1 (‘column’) arrays. Let us now subtract ωQM from both
sides of equation (6) and multiply the resulting equation by
q�

1 (ω − H )−1 on the left and by (ω − SM )
−1e1 on the right,

where e1 = [1, 0 · · ·] is an M × 1 unit array. The resulting
equation is

q�
1 QM(ω − SM )

−1e1 = q�
1 (ω − H )−1QM e1

− βM+1q�
1 (ω − H )−1qM+1e�

M(ω − SM )
−1e1. (7)

We now use the identities

q�
1 QM = e�

1 (8)

QM e1 = q1. (9)

By inserting the relations equations (8) and (9) into (7) we
finally obtain

gv(ω) = [(ω − SM )
−1]11 + εM(ω), (10)

where

[(ω − SM )
−1]11 = 1

ω − α1 + β2
2

ω − α2 + · · ·
, (11)

and

εM (ω) = −βM+1(q1, (ω− H )−1qM+1)[(ω− SM )
−1]M1 (12)

is the so-called remainder. By neglecting the remainder in
equation (10), we arrive at the celebrated continued-fraction
expression for the diagonal matrix elements of the Green’s
function by Haydock, Heine and Kelly [13–16].

1.1. Non-diagonal matrix elements

It has long been believed that the calculation of off-diagonal
matrix elements via the Lanczos method would require
expressing them in terms of four auxiliary diagonal matrix
elements [16]. A careful inspection of the procedure outlined
above shows that, although no elegant continued-fraction
expression such as in equation (11) can be found for off-
diagonal matrix elements, the bulk of the numerical work done
for calculating one diagonal matrix element, actually allows
for the calculation of many off-diagonal matrix elements at
essentially the same computational cost.

Suppose one is interested in the calculation of the off-
diagonal matrix element:

guv(ω) = (u, (ω − H )−1v). (13)

By starting a Lanczos chain with q1 = v (q1 = u would also
do) and following essentially the same procedure as above, guv

can be expressed as

guv(ω) ≈ (ζM , (ω − SM)
−1e1) (14)

where
ζM = Q�

M u (15)
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is an array of dimension M (the length of the Lanczos chain)
and a remainder analogous to equation (12) is neglected.
Although equation (14) does not lend itself to a simple
continued-fraction expression, its calculation actually only
requires the solution of a tridiagonal linear system whose
dimension is the length of the Lanczos chain, a task that can be
accomplished with a very limited numerical effort. A crucial
feature of the present algorithm that makes it convenient in
practice is that the components of the ζM array, ζM,i = (qi , u),
can be calculated on the fly, without any need to store and
retrieve all the vectors of the Lanczos chain.

1.2. Non-Hermitian operators

The generalization to non-Hermitian operators is straightfor-
ward in principle, although possibly tricky in practice. Let
us assume that the matrix/operator H in equation (13) is re-
placed by a non-Hermitian one, L. Given a pair of vectors,
q1 and p1 normalized by the condition (p1, q1) = 1 (although
not strictly necessary, we assume both vectors to coincide with
v), a chain of vector pairs can be generated through the fol-
lowing recursion, known as the Lanczos bi-orthogonalization
algorithm [22]:

γ1q0 = β1 p0 = 0

q1 = p1 = v

βn+1qn+1 = Lqn − αnqn − γnqn−1

γn+1 pn+1 = L� pn − αn pn − βn pn−1,

(16)

where
αn = (pn, Lqn),

and βn+1 and γn+1 are scaling factors for the newly generated
q and p vectors, chosen so as to enforce bi-normalization:

(qn, pn) = 1.

In exact arithmetics, it is known that these two sequences of
vectors are bi-orthogonal, i.e. (qn, pm) = δnm , where δnm is
the Kronecker symbol. The resulting algorithm is described
in detail, for example, in [22]. Let us define the (N × M)
matrix QM as in equation (3) and PM analogously in terms of
the ps instead of the qs. The following Lanczos factorization
holds in terms of the quantities calculated from the recursions
equations (16):

L QM = QM TM + βM+1qM+1e�
M , (17)

L� PM = PM T �
M + γM+1 pM+1e�

M , (18)

P�
M QM = IM , (19)

where TM is the (M × M) tridiagonal matrix:

TM =

⎛
⎜⎜⎜⎜⎜⎜⎝

α1 γ2 0 · · · 0

β2 α2 γ3 0
...

0 γ3 α3
. . . 0

... 0
. . .

. . . γM

0 · · · 0 βM αM

⎞
⎟⎟⎟⎟⎟⎟⎠
. (20)

Let us now rewrite equation (17) as

(ω − L)QM = QM (ω − TM )− βM+1qM+1e�
M . (21)

By multiplying equation (21) by u�(ω − L)−1 on the left and
by (ω − TM)

−1e1 on the right, we obtain

u�QM (ω − TM)
−1e1 = u�(ω − L)−1 QM e1

− βM+1u�(ω − L)−1qM+1e�
M(ω − TM)

−1e1. (22)

Taking the relation QM e1 = q1
.= v into account,

equation (22) can be cast as

guv(ω) = (u, (ω − H )−1v)

= (ζM , (ω − TM)
−1e1)+ εM(ω), (23)

where ζM is defined as in equation (15) and

εM(ω) = −βM+1(u, (ω − L)−1qM+1)[(ω − TM )
−1]M1 (24)

is the error made when truncating the Lanczos chain at the
M th step. Neglecting εM(ω) we arrive at the following
approximation for guv(ω):

guv(ω) ≈ (ζM , (ω − TM)
−1e1), (25)

in full analogy to the Hermitian case, expressed by
equation (14). The size of the error term εM in equation (24)
generally decreases with increasing the number M of steps in
the Lanczos chain. Although the convergence of off-diagonal
matrix elements may be slower than that of diagonal ones
(more so near a resonance and/or in the non-Hermitian case), a
manageable number of Lanczos steps is found to be sufficient
to achieve the accuracy needed for spectroscopic applications,
as demonstrated by the numerical applications discussed in the
following sections and illustrated in figures 2, 4 and 6.

2. Time-dependent density-functional perturbation
theory

The time-dependent density-functional theory of Runge and
Gross [7, 8] allows for the calculation of the dynamical
susceptibility of a system of interacting electrons without
recourse to the explicit calculation of any excited states.
Instead, excited-state energies and oscillator strengths can be
estimated within TDDFT by inspecting the analytic properties
of the susceptibility thus calculated. In order to find an
expression for the dipole susceptibility of a system, it is
convenient to start by casting the Kohn–Sham (KS) time-
dependent equations of Runge and Gross [7, 8] into an operator
equation for the one-electron density matrix, ρ̂(t):

i
dρ̂(t)

dt
= [ĤKS(t), ρ̂(t)], (26)

where

ĤKS(t) = −1

2

∂2

∂r
+ vext(r, t)+ vHXC(r, t) (27)

is a time-dependent KS Hamiltonian, vext(r, t) and vHXC(r, t)
being the time-dependent external and Hartree plus exchange–
correlation (XC) potentials, respectively, and the square

3
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brackets indicate a commutator. In the above equation, as well
as in the following, quantum-mechanical operators are denoted
by a hat, ‘̂ ’, and Hartree atomic units (h̄ = m = e = 1) are
used. When no confusion can arise, local operators, such as
one-electron potentials, V̂ , will be indicated by the diagonal
of their real-space representation, v(r), as in equation (27).
Linearization of equation (26) with respect to the external
perturbation leads to

i
dρ̂ ′(t)

dt
= [Ĥ ◦

KS, ρ̂
′(t)]+ [V̂ ′

HXC(t), ρ̂
◦]+ [V̂ ′

ext(t), ρ̂
◦], (28)

where ρ̂◦ is the unperturbed density matrix, ρ̂ ′(t) = ρ̂(t) −
ρ̂◦, V̂ ′

ext is the perturbing external potential and V̂ ′
HXC is the

variation of the Hartree plus XC potential linearly induced by
n′(r, t) = ρ ′(r, r; t). In the adiabatic approximation one has

v′
HXC(r, t) =

∫
κ(r, r′)n′(r′, t) dr′, (29)

where κ(r, r′) = 1
|r−r′ | + δvXC(r)

δn(r′) |n(r)=n◦(r). By inserting
equation (29) into (28), one sees that the linearized Liouville
equation can be cast into the form:

i
dρ̂ ′(t)

dt
= L · ρ̂ ′(t)+ [V̂ ′

ext(t), ρ̂
◦], (30)

where the action of the Liouvillian super-operator, L, onto ρ̂ ′,
L · ρ̂ ′, is defined as

L · ρ̂ ′ .= [Ĥ ◦
KS, ρ̂

′] + [V̂ ′
HXC[ρ̂ ′], ρ̂◦], (31)

and V̂ ′
HXC[ρ̂ ′] is the linear operator functional of ρ̂ ′ whose

(diagonal) kernel is given by equation (29). By Fourier-
analyzing equation (30) we obtain

(ω − L) · ρ̃ ′(ω) = [Ṽ ′
ext(ω), ρ̂

◦]. (32)

The expectation value of any one-electron operator can
be expressed as the trace of its product with the one-electron
density matrix. The Fourier transform of the dipole linearly
induced by the perturbing potential, V̂ ′

ext, for example, is
therefore

d(ω) = Tr(r̂ρ̃ ′(ω)), (33)

where r̂ is the quantum-mechanical position operator and ρ̂ ′
is the solution of equation (32). Let us now suppose that the
external perturbation is a homogeneous electric field:

ṽ′
ext(r, ω) = −E(ω) · r. (34)

The dipole given by equation (33) is therefore

di(ω) =
∑

j

αi j(ω)E j (ω), (35)

where the dynamical polarizability, αi j (ω), is defined by

αi j (ω) = − Tr(r̂i (ω − L)−1 · [r̂ j , ρ̂
◦]). (36)

Traces of products of operators can be seen as scalar products
defined on the linear space of quantum-mechanical operators.
Equation (36) can therefore be formally written as

αi j(ω) = − 〈
r̂i |(ω − L)−1 · ŝ j

〉
, (37)

where
ŝ j = [r̂ j , ρ̂

◦] (38)

is the commutator between the position operator and the
unperturbed one-electron density matrix. The results obtained
so far and embodied in equation (37) can be summarized by
saying that within TDDFT the dynamical polarizability can be
expressed as an appropriate off-diagonal matrix element of the
resolvent of the Liouvillian super-operator.

2.1. The DFPT representation

The calculation of the polarizability using equations (36)
or (37) follows the algorithm explained in detail in
[17, 24, 18, 25]. In particular, at variance with most current
implementations and applications of TDDFT [8], we avoid
the representation of the density matrix response in terms of
virtual KS states. Instead, we replace the sum over virtual
orbitals with projectors that can be conveniently expressed in
terms of the occupied manifold only. Such a representation
of response functions has been pioneered in DFPT [5, 6] and
is here extended to the dynamical regime. For the purposes
of the present paper, suffice it to say that the response density
matrix is represented by two sets of response orbitals. Each
one of these sets contains the same number of orbitals as the
occupied manifold, and is kept orthogonal to the ground-state
KS orbitals during the Lanczos iterations. The application of
the Liouvillian super-operator L to each set of response orbitals
amounts to the application of the unperturbed Hamiltonian to
every orbital of the set followed by the real-space calculation
of the response charges and the computation of V̂ ′

HXC. We
conclude that each step of the TDDFT Lanczos chain costs
essentially twice the price of a single step of the iterative
diagonalization of the ground-state KS Hamiltonian, a single
step of ab initio molecular dynamics or a single step of
static (time-independent) DFPT. Because of these analogies,
and of the crucial role played by the DFPT representation
of response density matrices, we name our approach time-
dependent density-functional perturbation theory (TDDFPT).

2.2. Lanczos extrapolation

Numerical practice has shown that obtaining a well-converged
spectrum in a plane-wave (PW) implementation of TDDFT
may require a few thousand (2–4000) Lanczos steps and that
such a number depends on the PW kinetic-energy cutoff.
However, it has also been observed that the components of
the ζM array rapidly tend to zero in a few hundred steps,
whereas the calculated Lanczos coefficients5 (βn and γn)
oscillate around a value that is very close to the width of the
optical spectrum (in a PW calculation this is, in turn, roughly
twice the kinetic-energy cutoff). This observation opens the
way to a simple, yet very effective, way of extrapolating the
Lanczos recursion by using very large tridiagonal matrices
when solving the linear system in equation (25) (say, M =
5 The particular symplectic structure of the TDDFT equations [23] can be used
to define a representation where the α coefficients vanish identically. The β
and γ coefficients can be made to coincide except for exceptional Lanczos
iterations where they have equal magnitude, but opposite sign.

4
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Figure 1. (Colour online) Structure of the caffeine molecule,
C8N4O2H10. Blue atoms are nitrogen, red oxygen, greenish carbon
and light gray hydrogen.

10 000) and setting the components of ζM,n = 0 and the
Lanczos coefficients βn = β̄ for n > M, where M is a rather
small number, of the order of a few hundred (see footnote 5).

2.3. An example

The theory described above has been implemented [18] in a
module of the Quantum ESPRESSO distribution of codes for
the simulation of matter based on electronic-structure theory,
using DFT, pseudopotentials (PPs, norm-conserving and ultra-
soft) and PWs [26]. As a demonstration of our methodology,
we have calculated the absorption spectrum of the (isolated)
caffeine molecule whose structure is depicted in figure 16.

In figure 2 we show the absorption spectrum of the
caffeine molecule, as calculated by TDDFPT, using Lanczos
chains of different lengths. While the main features of the
spectrum (particularly at low frequency) converge rather fast,
its overall appearance at intermediate and high frequency is
spoiled by the inability of pseudo-discrete states resulting
from the early truncation of the Lanczos chain to properly
mimic a continuous spectrum. When the number of recursions
is sufficiently large, these pseudo-discrete states eventually
merge into a well-converged continuous spectrum.

In figure 3 we display the sequence of β coefficients
calculated by our Lanczos recursion for the caffeine molecule
(see footnote 5). One notices that these values are scattered
around two distinct constants for odd and even iteration counts,
whose average nicely approximates these two constants nicely
approximates as 1

2 of the kinetic-energy cutoff of the PW basis
set (Ecut = 25 Ryd), and that their difference approximates the
position of the first optical transition at ∼4 eV = 0.29 Ryd.
This fact was found and explained in [18] and can be used as
a basis for extrapolating very long Lanczos chains from a few
iterations, as explained in section 2.2.

6 TDDFPT calculations were performed using the PBE [27] XC energy
functional, pseudopotentials H.pbe-rrkjus.UPF, C.pbe-rrkjus.UPF,
N.pbe-rrkjus.UPF and O.pbe-rrkjus.UPF from the Quantum ESPRESSO

distribution, and a PW energy cutoff of 25 and 250 Ryd for wavefunctions and
the charge density, respectively. The spectra were calculated at the theoretical
optimized molecular geometry, whose bond lengths deviate from experiment
by <1% on average (maximum deviation <3%).

In
te

ns
ity

10 20 30 400

Energy (eV)

50

500 Steps 1000 Steps 2000 Steps 10000 Steps

4 6 8

Figure 2. Absorption spectrum of the caffeine molecule calculated
using our Lanczos scheme, using recursion chains of different
lengths. The inset shows a magnification of the low-frequency
portion of the spectrum.

Figure 3. Coefficients of the Lanczos chain generated for the
dynamic polarizability of the caffeine molecule, equation (36),
calculated using the method of section 1.2, as functions of the
iteration count. The green horizontal line indicates the average of the
coefficients, while the vertical bar indicates the difference between
the averages performed over even and odd iterations, separately.

In figure 4 we display the TDDFPT absorption spectrum
of the caffeine molecule, as calculated by extrapolating the
Lanczos chains following the discussion of section 2.2. The
convergence of the Lanczos recursion is dramatically enhanced
by chain extrapolation, allowing us to obtain a converged
spectrum with as few as 500–1000 iterations.

3. Quasi-particle spectra in the GW approximation

The most elementary electronic excitation process in a
molecule or in a solid is the removal/addition of an electron
from a system originally in its ground state. These processes
are accessible to direct/inverse photoemission spectroscopies
and can be described theoretically in terms of quasi-particle
(QP) states [9]. The QP energies En are eigenvalues of a
Schrödinger-like equation for the so-called QP amplitudes ψn :

5
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Figure 4. Absorption spectrum of the caffeine molecule calculated
using our Lanczos scheme, using recursion chains of different
lengths and extrapolating the calculated chain up to 10 000 steps, as
described in section 2.2. The inset shows a magnification of the
low-frequency portion of the spectrum.

[
−1

2

∂2

∂r2
+ vext(r)+ vH(r)

]
ψn(r)

+
∫

dr′�(r, r′; En)ψn(r′) = Enψn(r), (39)

where vH is the Hartree potential and �(r, r′, ω) is the
kernel of the energy-dependent and non-Hermitian self-energy
operator. Equation (39) is similar to the KS equation with
the XC potential replaced by the self-energy operator. In
the GW approximation [10, 11] the self-energy kernel is the
frequency convolution of the one-electron propagator, G, and
of the dynamically screened interaction, W :

�GW(r, r′;ω) = i

2π

∫ ∞

−∞
dω′ G(r, r′;ω′)W (r, r′;ω − ω′),

(40)
where W = v + v · � · v, �(r, r′;ω) = (1 − P ·
v)−1 · P is the reducible polarizability, P its irreducible
counterpart, v(r, r′) = 1

|r−r′ | is the bare Coulomb interaction
and a dot indicates the product of two kernels, such as in
v · �(r, r′, ω) = ∫

dr′′ v(r, r′′)�(r′′, r′;ω). We assume
time-reversal invariance to hold—so that wavefunctions are
real—and we work on the imaginary-frequency axis [28]:
real-frequency results can then be recovered upon analytic
continuation. At the lowest order of approximation (usually
referred to as the G◦W◦ approximation) the one-electron
propagator G and the screened interaction W in equation (40)
are calculated directly from the KS energies εn and
wavefunctions ψ◦. In particular, W is obtained from the
irreducible polarizability P which is calculated in the random-
phase approximation (RPA):

P◦(r, r′; iω) = 4Re
∑

cv

ψ◦
c (r)ψ

◦
v (r

′)ψ◦
v (r)ψ

◦
c (r

′)
iω − (εc − εv)

. (41)

By treating the difference between �̂G◦W◦ and VXC in first-
order perturbation theory, QP energies are given by the

nonlinear equation

En ≈ εn + 〈ψ◦
n

ˆ|�G◦W ◦(En)|ψ◦
n 〉 − 〈ψ◦

n |V̂XC|ψ◦
n 〉. (42)

In [19], it was shown that it is possible to represent the
polarizability operators � and P in terms of a reduced, yet
controllable accurate, orthonormal basis set {�μ(r)} built in
terms of localized Wannier-like orbitals:

P◦(r, r′, iω) =
∑
μν

P◦
μν(iω)�μ(r)�ν(r′). (43)

Using the RPA, equation (41), P◦
μν(iω) is

P◦
μν(iω) = −4 Re

∑
v,c

1

εc − εv + iω

×
∫

dr dr′�μ(r)ψ◦
v (r)ψ

◦
c (r)ψ

◦
v (r

′)ψ◦
c (r

′)�ν(r′). (44)

While the availability of such an optimal representation for the
polarizability substantially reduces the numerical load for the
calculation of the self-energy matrix elements, the number of
virtual states to be included in equations (41) or (44) in order
to obtain an acceptable convergence is very large, a fact often
overlooked in the literature. In practice, rather accurate results
are obtained by extrapolating QP energies as functions of the
largest virtual-state energy included in the calculation of the
irreducible polarizability, E (the leading error in the truncated
sum decreases as the inverse of E). The sum over empty states
in equation (44) and unwieldy extrapolations of the results can
be eliminated altogether by introducing the projector operator
over the virtual-state (electron) manifold, Q̂e = 1̂ − Q̂h, Q̂h

being the projector onto occupied (hole) states [20]. In terms
of Q̂e equation (44) is

P◦
μν(iω) = −4 Re

∑
v

〈ψ◦
v�μ|Q̂e(Ĥ

◦−εv+ iω)−1 Q̂e|ψ◦
v�ν〉,

(45)
where

〈r|ψ◦
v�ν〉 = ψ◦

v (r)�ν(r). (46)

A direct approach to equation (45) would require the inversion
of (Ĥ ◦ − εv + iω) for every value of the (imaginary) frequency
and the application of the resulting inverse to Nv × NP states,
where Nv and NP are the number of valence states and
polarizability basis functions, respectively, thus making the
resulting algorithm awkward. In order to substantially reduce
the computational load we first reduce the number of functions
to which the inverse shifted Hamiltonian in equation (45) has
to be applied. The first step is to set up an optimally reduced
orthonormal representation for the linear space spanned by the
vectors, {Q̂e|ψv�ν〉}:

〈r|Q̂e|ψ◦
v�μ〉 ≈

∑
α

tα(r)Tα,vμ, (47)

where the basis functions {tα(r)} are generated by a block
Gram–Schmidt procedure with elimination of linear quasi-
dependences [20] and Tα,vμ = 〈tα|Q̂e|ψv�μ〉. Using
equations (47), (45) is

P◦
μν(iω) ≈ −4 Re

∑
v,αβ

〈tα|(Ĥ ◦ − εv + iω)−1|tβ〉Tα,vμTβ,vν .

(48)
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Figure 5. First (vertical) ionization potential of gas-phase caffeine,
as obtained from GW calculations. Full symbols indicate results
obtained by truncating the sum over virtual states in the calculation
of the irreducible polarizability (see equations (41) and (44)) to the
virtual energy reported on the abscissa. The data displayed as
diamonds have been used to fit the results to the expression:
IP(E ) = IP∞ − β/E . The resulting fit is reported in orange. The
horizontal lines report the extrapolated IP, together with other
relevant data (experiments from [29]).

Having thus reduced the number off-diagonal matrix elements
of the resolvent of the Hamiltonian in equation (45), these
matrix elements can be efficiently calculated by a Lanczos-
chain algorithm, as explained in section 1.1. An analogous
approach can be applied to the calculation of the expectation
values of the self-energy [20]. More details on the present
Lanczos-GW approach can be found in [20].

3.1. An example

The theory described above has been implemented for norm-
conserving PPs [19, 20] in a module of the Quantum ESPRESSO

distribution [26]. As a demonstration of our methodology,
we have calculated the QP energies of the (isolated) caffeine
molecule7.

In figure 5 we display the values of the caffeine IPs
calculated using the method of [19] and limiting the sum over
virtual states in the calculation of the irreducible polarizability
to some specified energy range, together with the IP obtained
using the present approach, as well as with DFT-LDA
calculations and experiment [29]. The data reported in this
figure witness the slow convergence of the sums over virtual
states in equations (41) and (44) as well as the accuracy and
convenience of the Lanczos method described here. Also note
the great improvement of the predicted IP passing from a DFT-
LDA to an MBPT-GW description of QP states.

7 GW calculations were performed using the LDA XC functional,
pseudopotentials H.pz-vbc.UPF, C.pz-vbc.UPF, N.pz-vbc.UPF and
O.pz-mt.UPF from the Quantum ESPRESSO distribution, and a PW energy
cutoff of 60 and 240 Ryd for wavefunctions and the charge density,
respectively. The spectra were calculated at the same geometry used in our
TDDFPT calculation. The polarization basis is using the method of [19]
with a conduction energy cutoff E2

c = 26.15 eV, corresponding to 750
conduction states, a cutoff on the norm of Wannier products s1 = 0.1 a.u. and
a cutoff on the eigenvalues of the overlap matrix between Wannier products
s2 = 0.01 a.u., resulting in a polarization basis of about 1320 elements.

Figure 6. Convergence of the (vertical) ionization potential (IP) of
gas-phase caffeine as calculated with the present GW method, as a
function of the number of recursion steps, n, used in the Lanczos
chain for the evaluation of the irreducible polarizability and
self-energy operators.

Figure 7. (Colour online) Comparison of the density of states (DOS)
calculated for the caffeine molecule using the present GW method
(green line) and DFT-LDA calculations (red line) with the
photoemission spectrum reported in [29] (blue line). A Gaussian
broadening of 0.25 eV has been used to smear the molecular lines.

In figure 6 we display the dependence of the caffeine IP,
as calculated from the present GW method, using different
numbers of Lanczos steps to calculate matrix elements of
the one-electron propagator, such as in equation (48) The
calculated IPs converge very rapidly as a function of the
number of Lanczos steps, possibly also due to the fact that
the present implementation only requires the evaluation of the
relevant propagators at imaginary frequencies (hence, far from
any singularities that lie on the real axis).

In figure 7 we report the density of states (DOS) of
the caffeine molecule in the region of the valence energies,
as calculated from the present GW method and from DFT-
LDA, and compare them with a experimental photoemission
spectrum from [29]. Note that no features are found in the
experimental spectrum above 8.25 eV, as direct photoemission
probes only valence states. Although the relative intensity of
the peaks cannot be compared with experiments, due to our
complete neglect of any matrix-element effects, one sees that
their positions are quite well reproduced by GW, whereas LDA

7
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shows the well-known tendency to close the QP gap (occupied
states are shifted upward, whereas unoccupied one are shifted
downward).

4. Conclusions

In this paper we have shown how Lanczos methods can
be used to handle some of the hard numerical problems in
the computer simulation of excited-state properties within
TDDFT and MBPT. In the case of TDDFT, we believe that
the method is close to be numerically optimal if detailed
information on individual excited states is not required. Of
course, no numerical advance can cope with the inadequacy of
currently available XC kernels to properly describe excitonic
and charge-transfer effects in the excited states. As for
MBPT, the approach presented here can be easily extended
to the calculation of optical spectra using the Bethe–Salpeter
equation (BSE). On the other hand, a simplified version of
the BSE featuring a statically screened exchange kernel has
been recently treated with success using an approach similar
to that used here for TDDFT [30]. All in all, we believe that
the Lanczos method will allow for substantial progress in the
numerical simulation of electronic excited states in the near
future.
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